skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Israelsen, Brett"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    People who design, use, and are affected by autonomous artificially intelligent agents want to be able to trust such agents—that is, to know that these agents will perform correctly, to understand the reasoning behind their actions, and to know how to use them appropriately. Many techniques have been devised to assess and influence human trust in artificially intelligent agents. However, these approaches are typically ad hoc and have not been formally related to each other or to formal trust models. This article presents a survey of algorithmic assurances , i.e., programmed components of agent operation that are expressly designed to calibrate user trust in artificially intelligent agents. Algorithmic assurances are first formally defined and classified from the perspective of formally modeled human-artificially intelligent agent trust relationships. Building on these definitions, a synthesis of research across communities such as machine learning, human-computer interaction, robotics, e-commerce, and others reveals that assurance algorithms naturally fall along a spectrum in terms of their impact on an agent’s core functionality, with seven notable classes ranging from integral assurances (which impact an agent’s core functionality) to supplemental assurances (which have no direct effect on agent performance). Common approaches within each of these classes are identified and discussed; benefits and drawbacks of different approaches are also investigated. 
    more » « less